
4 | New Zealand Journal of Physiotherapy | 2025| Volume 53 | Issue 1

GUEST EDITORIAL

Neurofeedback-based Brain–computer Interface for Pain 
Management: A Research Perspective

Jerin Mathew BPhty, PhD

Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand

Mathew, J. (2025). Neurofeedback-based brain–computer interface for pain management: A research 
perspective. New Zealand Journal of Physiotherapy, 53(1), 4–6. https://doi.org/10.15619/nzjp.v53i1.479

Persistent pain is a complex and highly individualised experience, 
existing on a dynamic continuum that does not affect everyone 
equally (García-Rodríguez et al., 2023). Persistent pain remains 
one of the most prevalent and disabling conditions worldwide, 
impacting 20–30% of the population and affecting more than 
half of older adults (El-Tallawy et al., 2021). In Aotearoa New 
Zealand, one in five people live with chronic pain, placing a 
significant burden on individuals, their whānau, and the broader 
healthcare system (Abbott et al., 2017). While conceptually 
compelling, the pain experience associated with persistent 
pain conditions does not always have a relationship to the 
underlying aetiopathology. Research has shown that persistent 
pain is associated with widespread changes in brain activity and 
functional connectivity in regions involved in pain perception 
and experience (De Ridder et al., 2021). 

The experience of pain is a complex and dynamic process 
that integrates multiple factors, including sensory perception, 
emotional and cognitive components, and the pain-inhibitory 
mechanisms of the brain (Vanneste & De Ridder, 2021). These 
dynamic interactions between pain-related brain regions and 
networks are driven by brain oscillations (waves) (Ploner et al., 
2017). Notably, electroencephalographic (EEG) studies have 
identified distinct changes in brain oscillations across acute, 
chronic, and experimentally induced musculoskeletal pain 
conditions (Mathew, Perez, et al., 2022). For example, an inverse 
relationship has been observed between the strength of alpha 
brain oscillations (the dominant waves that are active during 
relaxed wakefulness) in the somatosensory cortex and pain 
sensitivity (Babiloni et al., 2006; Tu, Tan, et al., 2016; Tu, Zhang, 
et al., 2016). Similarly, reviews highlight alterations in various 
brain oscillations across various chronic pain conditions (Dos 
Santos Pinheiro et al., 2016; Mathew, Perez, et al., 2022). If 
this is the case, modulating these oscillations in the appropriate 
pain-mediating brain regions should lead to corresponding 
changes in pain perception and experience. However, the bigger 
question is: can we modulate these brain wave alterations to 
influence pain experience?

The field of non-invasive neuromodulation and brain–computer 
interfaces for pain management is rapidly advancing, offering 
promising avenues for intervention. Several non-invasive 
neuromodulation techniques, including neurofeedback (NF), 
repetitive transcranial magnetic stimulation, and transcranial 
electrical stimulation, have been explored for pain modulation 
(Hesam‐Shariati et al., 2021; Knotkova et al., 2021). Among 
these, EEG-based neurofeedback (EEG-NF) stands out as a non-
invasive, endogenous brain–computer interface technique with 
demonstrated efficacy in chronic pain management (Hesam‐

Shariati et al., 2021; Patel et al., 2020; Roy et al., 2020). EEG-NF 
operates in a closed-loop system, enabling individuals to learn 
self-regulation of brain activity through real-time feedback 
(e.g., visual, auditory, or combined visual and auditory). This 
approach allows researchers to investigate how brain regulation 
influences behaviour and pain perception using validated 
outcome measures (e.g., the Brief Pain Inventory, Numerical Pain 
Rating Scale, Pain Unpleasantness). The application of EEG-NF 
has been explored in both animal models and humans, and 
interest in this field of research has accelerated over the last few 
decades. The principal goal of EEG-NF is to modulate specific 
brain oscillations linked to a disease or behavioural state (Strehl, 
2014). Each EEG-NF protocol can be designed to train (increase 
or decrease) a specific brain oscillation through the selected EEG 
electrode (surface NF) or can be localised to a specific region of 
the brain (Marzbani et al., 2016) using advanced neuroimaging 
technologies (Adhia et al., 2023; Mathew, Adhia, et al., 2022). 
Figure 1 illustrates the EEG-NF setup and feedback loop. 

EEG-NF shows promise as a tool for managing various 
conditions by regulating brain signals through feedback-based 
learning. Unlike other neuromodulation techniques, EEG-NF 
necessitates active engagement from the participant to achieve 
optimal results, and each individual will respond uniquely to 
the training, which facilitates endogenous neuromodulation. 
As a result, the time required for successful regulation of 
brain activity can vary among people. For example, during a 
30-minute EEG-NF session, one participant may successfully
train their brain waves for 10 min, while another may achieve
20 min of successful training (Mathew et al., 2025). Therefore,
it is crucial to account for the duration of successful training
for individuals when studying the effects of EEG-NF. Moreover,
conventional pre-post group analyses may fail to capture this
individual variability, increasing the risk of Type I and Type II
errors and potentially masking the true effects of training. This
emphasises the need to account for the duration of successful
training as a key variable in future clinical trials evaluating the
effectiveness of EEG-NF, particularly for chronic pain.

EEG-NF training is based on well-established learning principles, 
and operant conditioning is a key component. Operant 
conditioning is a learning process in which behaviour is shaped 
by its consequences – desired actions are reinforced, increasing 
the likelihood of their repetition. In EEG-NF, individuals modify 
their neural responses based on the feedback received, a process 
known as reinforcement learning. By repeatedly reinforcing 
specific neural patterns, this training enhances the potential for 
sustained changes in brain function (Skinner, 1971; Staddon 
& Cerutti, 2003). A successful change according to the task is 
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positively reinforced with feedback (e.g., auditory, visual), while 
failure to change is not rewarded with any form of feedback, 
enabling individuals to self-regulate real-time brain activity 
(Koralek et al., 2012; Strehl, 2014). Despite ongoing debate 
regarding methodological implementation, operant conditioning 
remains a fundamental mechanism underlying EEG-NF learning. 

Another supporting theory, the Dual-Process Theory, suggests 
that learning involves both efferent (outgoing) and afferent 
(incoming) processes. Individuals use cognitive strategies 
and interoceptive awareness to actively regulate their brain 
activity (Dunn et al., 1986; Lacroix, 1986; Muñoz-Moldes & 
Cleeremans, 2020). The CRED-nf (Consensus on the reporting 
and experimental design of clinical and cognitive-behavioural 
neurofeedback studies) checklist further supports the integration 
of cognitive strategies to optimise NF training outcomes. 
Moreover, the CRED-nf can be a valuable guide for clinicians 
and for designing robust clinical trials to explore the effects of 
EEG-NF (Ros et al., 2020).

While extensive research has established the potential of 
NF for chronic pain management, its clinical translation and 
implementation remain critical, particularly in Aotearoa New 
Zealand. The time has come to bridge the gap between research 
and practice by integrating NF into clinical settings. I strongly 
believe in the potential of NF as a transformative approach 
for pain management, and I am hopeful that its widespread 
adoption will soon become a reality.
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Figure 1

EEG-NF Set-up and Feedback Loop

During EEG-NF, real-time activity and/
or connectivity metrics of the targeted 
brain region(s) are recorded using EEG 
electrodes placed on the scalp. The 
signals are processed and analysed in real 
time to determine whether they meet 
the training threshold. If the criterion 
is met – such as uptraining a specific 
frequency in a designated region – the 
computer provides feedback as positive 
reinforcement. This process facilitates the 
feedback loop, allowing the participant 
to receive reinforcement each time 
they achieve the threshold. Created in 
BioRender. Mathew, J. (2025) https://
BioRender.com/m56v825
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